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Abstract

Image retrieval systems based on the tmage-query-by-ezample paradigm locate their answer set using a
similarity measure of the query image with all images stored in the database. Although this approach generally
works for quick re-location of ‘identical’ or partly occluded images, it does not support the more interesting
query type aimed at finding images with a particular image fragment. In this paper we introduce a region-
based indexing scheme to support retrieval of images on the basis of both global and local image features.
keywords: Image Retrieval, Similarity measures, Region Features, and DBMS.

1 Introduction

With the advent of large image databases becoming readily available for inspection and browsing, it becomes
mandatory to improve image database query support beyond the classical textual annotation and domain specific
solutions, e.g. [?, ?]. An ideal Image DBMS would provide a data model to describe the image domain features
and it would provide a query language to study domain specific algorithms with respect to their precision and
recall capabilities. However, it is still largely unknown how to construct such a generic image database system.

Prototype image database systems, such as QBIC [?] and VisualSeek[?], have demonstrated some success
in supporting domain-independent queries using global image properties. Their approach to query formulation
(after restricting the search using using textual categories) is based on presenting a small sample of random images
taken from the target set and to enable the user to express the query (Q1) “find me images similar to this one”
by clicking one of the images provided. Subsequently the DBMS locates all images using its build-in metrics over
the color distribution, texture, or shape sets maintained.

This query evaluation technique is bound to fail for several reasons. First, it presupposes that the target
image is stored in the database and that progressing from a small sample will lead to it quickly. This won’t be
true when the databases becomes large, such as envisioned for the Acoi image database!. Random sample sets
to steer the query process will become confusing, because they likely lack an evident color, texture and shape
relationship with the semantic domain of interest.

Second, the global image properties alone are not sufficient to prune false hits. Image databases are rarely
used to answer the query Q1. Instead, the user formulates a query (Q2) :“find me an image that contains (part
of) the one selected” where the containment relationship is expressed as a user controlled metric over selected
features or directly (Q3) :“ find me an image that contains specific features using my own metric”. In addition
to color distribution and texture, spatial information about object locality embedded in the image is needed.

For example, in a large image database one could be interested to locate all images that contain part of the
Coca-cola logo. This query could be formulated by clipping part of a sample Coca-colo logo to derive its reddish
(R) and white (W) color and to formulate a query of the form:

select display(i)

from image_region rl,r2, image i

where  distance(rl.avghue, R) < 0.2 and distance(r2.avghue, W) < 0.2
and rl.area overlaps r2.area and rl in i

sort by distance(rl.avghue, R), distance(r2.avghue, W)

This query uses two primitive parameterized metric functions. The function distance calculates a distance in
the color space and overlaps determines region containment. The former is defined as part of the color data type
and the latter for the region data type. In principle, the DBMS should support overloading and refinement of
this function by the user.

LAcoi is the experimental base for the national project on multi-media indexing and search (AMIS)



Finally, in an ideal image retrieval system, querying should be expressed in terms of semantic objects em-
bedded. For example, a sketch should be sufficient to locate the objects of interest. However, automatic object
detection and matching is beyond the scope of this project.

A challenge for database designers is to identify the minimal set of features and operators to accomodate such
image query retrieval. In particular, since their derivation from the source image is often time consumings. This
problem becomes even more accute when the envisioned database is to contain a million images.

In [?] we introduce a hierarchical indexing scheme to support localization of images according to query type
@1- Tt confirmed that the average color of successively partitioned regions provide for a good handle to steer the
query process. In this paper we extend this techique to accommodate queries of type @2 using both a split and
a merge image indexing algorithm. The former recursively splits an image into smaller regions until their feature
vectors dissimilarities fall below a cut-off point. The image objects thus considered are rectangular in shape. The
latter uses a bottom-up strategy, i.e. rectangular regions are merged as long as their feature vectors are closely
related.

The remainder of this report is organized as follows. In Section 2 we position our approach within the context
of other prototype image database systems and provide a short introduction of the Monet database system for
image retrieval. Section 3 explains the data model and the indexing algorithms. The experimental results are
described in Section 4.

2 Image retrieval research

In this section we review several image database project to provide the background information and to identify
the requirements imposed on image DBMS.

2.1 Image retrieval projects

The QBIC project [?] studies methods to query image databases based on the image content. The QBIC-web
demo contains approximately 1,900 images. This demo supports queries on keywords and on the image contents
color layout, color percentage and texture. Similarity is based on the Euclidean distance between two feature
vectors. Only global features are used by this system. To improve efficiency, the search space is reduced using a
lower bound metric on the color histogram distance. It has been proven that the average color is a lower bound
of the color histogram distance [?], which does not result in missing actual hits, though extra false hits will be
found.

The Photobook [?] provides a large amount of image processing functionality useful for content-based image
retrieval. An example is the semantics preserving image compression technique, which reduces images to a small
set of perceptually-significant coefficients. Using a training set of images, the ”eigenimage” vectors are computed.
These vectors are used to compress the image content information. The similarity between two images is computed
using the distance in this compressed ”eigenimage” space. This has been succesfull in face recognition.

The approach taken by Gevers [?] is to build histograms of the local Hue, the dominant Hue edges and Hue
corners. The Hue color component is invariant to surface specularities like shadow and highlights. The similarity
measure is the color histogram intersection [?], which is less variant to occlusion and less dependent on the view
point. A web demo is available with about 500 images.

The VISUALSeek image retrieval system, as described in [?] segments the image into objects which have equal
binary color content. The spatial information about these objects is also stored. Using both the spatial and color
properties the user can query this database. A large database of 12,000 images is used in their web demo.

This short review of projects stresses the need for further experiments in storage and indexing image database.
The experimentation platforms are rather poor with respect to scalability. Even the largest database considered
contains information of just a few thousand images. Moreover, all systems are focussed on query type Q1.

2.2 Image indexing techniques

Data structures for image feature indexing has received quite some research attention. The baseline is to replace
the search key of an ordinary index structure by a feature vector and to include a proper comparison operator. For
example, quad-trees can be easily extended to multilevel color histograms. Signature files, originally developed
for textual information retrieval, have been extended by Faloutsos [?]. The trick is to use the important image
features as signatures for the images. So fast retrieval can be achieved using the signature files.

Chang et al.[?] proposed a “2D-string representation” to encode the objects and their spatial relationships.
Similarity retrieval of images encoded in 2D strings is mapped to substring matching. Nabil et.al. [?] use a graph-
based encoding of the objects and their spatial relationships. Subsequently, retrieval is turned into a weighted



graph-matching problem. A disadvantage of the approaches is that they do not easily fit a (relational) model.
The challenge is to get a better representation and operators to support a broad spectrum of query types.

2.3 Image Database Systems

Our implementation efforts are focussed on Monet, a novel database kernel under development at CWI and UvA
since 1993. Monet has been designed as a next generation system, anticipating market trends in database server
technology. It relies on a network of workstations with affordable large main memories (> 128 MB) per processor
and high-performant processors (> 50 MIPS). These hardware trends pose new rules to computer software — and
to database systems — as to what algorithms are efficient. Another trend has been the evolution of operating
system functionality towards micro-kernels, i.e. those that make part of the Operating System functionality
accessible to customized applications.
Given this background, Monet was designed along the following ideas:

e Binary relation storage model. Monet vertically partitions all multi-attribute relationships in Binary Asso-
ciation Tables (BATs), consisting of [0ID,attribute] pairs. This Decomposed Storage Model (DSM) [?]
facilitates table evolution. And it provides a cannonical representation for a variety of data models, includ-
ing an object-oriented model [?]. Moreover, it leads to a simplified database kernel implementation, which
enables readily inclusion of additional data types, storage representations and search accellerators.

e Main memory algorithms. Monet makes aggressive use of main memory by assuming that the database hot-
set fits into its main memory. For large databases, Monet relies on virtual memory management by mapping
files into it. This way Monet avoids introducing code to ’improve’ or ‘replace’ the operating system facilities
for memory/buffer management. Instead, it gives advice to the lower level OS-primitives on the intended
behavior? and lets the MMU do the job in hardware. Experiments in the area of Geographical Information
Systems[?] and large object-oriented applications [?] have confirmed that this approach is performance wise
justified.

e Monet’s extensible algebra. Monet’s Interface Language (MIL) is an interpreted algebraic language to
manipulate the BATs. In line with extensible database systems, such as Postgres, Jasmine and Starburst,
Monet provides a Monet Extension Language (MEL). MEL allows you to specify extension modules to
contain specifications of new atomic types, new instance- or set-primitives and new search accelerators.
Implementations have to be supplied in C/C++ compliant object code.

3 System overview

In this section we explain the data model, indexing schemes, and query primitives for the image retrieval appli-
caton. The input for the image database is gathered from the Web using a robot aimed at finding multi-media
objects.

3.1 Acoi database scheme

The core of the Acoi database schema is illustrated in Table 1. The basic building block is the Binary Association
Table (BAT), which provides the data structure to maintain functional mappings between values from arbitrary
domains.

The first BAT group in Table 1 illustrate the administration of multi-media objects located on the Web. For
each object keywords are automatically extracted from their context. It is used for pre-selection based on textual
information. Observe that their URL is sufficient to gain access upon need. The second BAT group contains
features obtained from the source, i.e. information part of the image representation format. The final group
contains features derived to support region-based querying. This encompasses both primary (average hue) and
secondary features. The img_region BAT enumerates the regions in each image. Their spatial relationships are
reflected in an R-tree. The remaining BATs represent features derived to support image querying.

To facilitate ease of manipulation, Monet was extended with an atomic type image and with image processing
functionality for feature extraction.

3.2 Region Indexing

The key challenge is to develop an efficient algorithm to locate the regions of interest for a given image. Two kinds
of algorithms are considered; a top-down method based on recursive splitting, called R-split, and a bottom-up
method based on successive merging, called R-merge. No attempt is made to detect or infer hidden faces. Neither

2This functionality is achieved with e.g. mmap(), madvise(),and mlock() Unix system calls.



# BAT name | Comments # BAT name | Comments

mmo_url document resource locator img_size image width x height
mmo_name document base name img_depth pixel depth
mmo_kind object kind {audio,image,video} || img-stamp derived icon
mmo._type object type {gif tiff,jpeg} img_icon user defined icon
mmo_cntxt link to enclosing document img_region image-region mapping
mmo_time last access time ir_color region average hue
mmo_censor flags (copyrighted, X-rated ) ir_hue dominant hue
txt_keyword keywords for an MMO ir_texture dominant angle
txt_phrase key phrase for an MMO ir_area region area

Table 1: Database schema

do we consider a search for optimal segmentation schemes common in image recognition research. We conceive
the index primarilly as a filter for applications dealing with image understanding.

The algorithm R-split finds the collection of discriminating regions by recursively splitting the image into
two sub-images. Splitting is attempted both horizontally and vertically. Sub-images are chosen such that their
dis-similarity in average Hue is maximal. This improves the selectivity of the individual regions.

The recursive process is controlled by several stop criteria as follows.

- Let I; be an image split into two regions I; ; and I; », Then both new regions are added to the img_region
index provided their average Hue differs from I; more then a given minimal threshold Hypreshota- This
guards against storing redundant information into the database.

- The maximal number of regions per image is limited by a system parameter, Hypjects. This guards against
repeatedly splitting images up to the pixel level. Instead, we assume that a limited number of regions
(possible dependent on the image size) is often sufficient.

The complexity of this algorithm is O(d*n?) with n the maximum image width or height and d is equal to Hopjects-
This is the worst case complexity. Usually, d will be less than Hopjects because of the first stop condition.

The algorithm R-merge attempts to merge regions into larger units. The algorithm starts by dividing the
original image into equal sized regions using a grid layout. Each grid element is a candidate region for inclusion
in the ¢mg_region index. The minimal grid size considered is Hy,;q pixels. Subsequently, we repeatedly attempt
to combine regions into larger units as follows. Let I; and I; be two regions. Then they are merged into a single
region [ if the following criteria hold.

- The average Hue of both regions I; and I; differ at most by a given constant Hypreshold-
- Both regions share at least one edge.

- The merge is locally optimal.

This process continues until no more regions can be merged. The complexity of this algorithm is O(n?In(n)),
with n the number of regions to start with.

There are large differences between the two algorithms considered. The R-split algorithm uses a simple region
representation, since splitting a rectangle always results in two new rectangles. Conversely, R-split needs a polygon
to follow the object boundaries.

An advantage of R-merge is that it enables reuse the hue average. The nature of splitting does not allow us for
such reuse of intermediate results at all. At each stage we have to inspect all pixels. A potential disadvantage of
R-merge would be the large number of polygons to start with. The split algorithm starts with only one rectangle.

In Section 4 we study the performance cost to gain a better understanding of the inscalability. Both algorithms
are based on the same a similarity function. They merely differ in its interpretation. The similarity function
calculates the weighted distance between the features in that region. The similarity for a single feature of two
regions is calculated using the following function, S(Ry, Ry) = (%)2. The function S(R;, R2) computes
the similarity between the regions Ry and R, using the primary feature F'.



4 Experimental results

4.1 Database construction

Construction of the Acoi database with one million images requires a step-wise approach, because its construction
is both cpu and storage intensive. Therefore, we conducted two kinds of experiments. First, we determine the
resource requirements for the indexing algorithms on a small 500-image database. Second, the web-robot is used
to take a sample to assess scalability.

The 500-image database is our standard database for image analysis research. As such is provides a reference
point for the algorithms in terms of precision later on. We fed a sample of 100 256x256 sized images to both
R-split and R-merge to determine the average number of regions in an image. This depends on the algorithmic
pa'rameters chreshold; Hobjects and ngid-

The left of figure 1 illustrates that R-merge should start with not too small a grid size. The right figure
illustrates that Hopjects should be set to 32, since splitting deeper will generally not result in more regions. It
also illustrates that R-split finds more regions.

Based on these experiments we can predict the storage and processing requirements for the complete database.
The region administration consumes 18 bytes in the current implementation. This should be multiplied by the
min{ Hopjects, B} where R is the actual number of regions determined by the algorithm. With a starting grid
size of a single pixel the average number of regions found by R-merge is less than 200, i.e. approximately 4Kb to
store the region features and index structures. R-split leads to many more objects and requires about 9Kb per
image. This leads to an index size of about 4 Gbyte.

In addition, we need space for the global features, e.g. URL, keywords and key-phrases, and secondary features,
e.g. histogram and texture. To assess the size and to confirm the index resource requirements, we used the web-
robot to obtain the first sample of about 1K gif images from the NL domain. The last table of 2 shows the BAT
sizes of this 1000 images large database. It indicates that far less than 200 regions are found per internet image.
This means that our 500-sample is an upperbound for the storage requirements. The table also shows the number
of keywords and the distribution of multi-media objects. The storage requirements of the icon is 7.5 K and about
2.5 for the remainding features, leading to a total of about 15 Gbyte.
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Figure 1: The number of regions using the R-merge and R-split algorithm

The final question to consider at this stage is whether creation of the Acoi database won’t take forever. To
quantify this, we ran a small experiment on 100 images to determine the wall-clock for the complete process. The
first two tables of table 2 show the timing results for the R-merge and R-split using different threshold values.

R-split and R-merge dominate the insertion cost, e.g. with a grid size of 4x4 pixels R-merge takes less 3
seconds. Since localization and download of the candidate images can take place in the background this enables
downloading of 30K images per day.

5 Conclusions

In this paper we have introduced the necessary data structures and operators to build a high performance image
database system aimed at supporting embedded image querying. We have experimentally demonstrated that a
bottom-up index construction outperforms a top-down approach terms of storage requirements and performance.
The storage overhead for the region feature index of an image is about 4 Kbytes.



# of Time(s) # of Time(s) # BAT name | count
Hgyq | 0.1 0.0001 || Hopjects | 0.1 | 0.0001 || mmo_url 1002
1 69.2 | 35.9 1 1.9 | 1.8 mmo_name 1002
2 123 | 7.9 2 2.1 (21 txt_keyword 17340
4 2.3 2.2 4 2526 txt_phrase 612

8 09 |09 8 33135 img_region 9042
16 04 |05 16 4.2 |1 4.9 ir_hue 9042
32 0.2 0.3 32 4.3 | 5.2 ir_texture 9042
64 0.1 0.1 64 43 | 5.0 ir_area 9042

Table 2: Experimental results

Based on these figures we expect that a full-blown incarnation of the Acoi image database takes 15 Gbyte
disk space and about one month of Web scouting. This database will become publically available as a national
resource for further studies in image indexing and image database technology in Spring 1997.



